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Logistic Regression 

 Regression used to fit a curve to data in which the 

dependent variable is binary, or dichotomous 

 Typical application: Medicine 

 We might want to predict response to treatment, where we might 

code survivors as 1 and those who don’t survive as 0 



Example 
Observations: 

For each value 

of SurvRate, the 

number of dots 

is the number 

of patients with 

that value of 

NewOut 

Regression: 

Standard 

linear 

regression 

Problem: extending the regression line a few units left or right along  

the X axis produces predicted probabilities that fall outside of [0,1] 



A Better Solution 

Regression Curve: 

Sigmoid function! 

 

(bounded by 

asymptotes y=0 and 

y=1) 



Logit Transform 

 The logit is the natural log of the odds 

 

 

 

 

 

  logit(p) = ln(odds) = ln (p/(1-p))  



Logistic Regression 

 In logistic regression, we seek a model: 

 

 

 That is, the log odds (logit) is assumed to be linearly related to the 

independent variable X 

 So, now we can focus on solving an ordinary (linear) regression! 

  

logit(p) = b0 + b1X



Logistic Response Function 

 When the response variable is binary, the shape of the response 

function is often sigmoidal: 

 

 

 



Interpretation of 1 

 Let: 

 odds1 = odds for value X (p/(1–p)) 

 odds2 = odds for value X + 1 unit 

  Then: 

 

 

 

 

 Hence, the exponent of the slope describes the proportionate rate at 

which the predicted odds ratio changes with each successive unit of X 

   

odds2
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Sample Calculations 
 Suppose a cancer study yields: 

 log odds = –2.6837 + 0.0812 SurvRate  

 Consider a patient with SurvRate = 40 

 log odds = –2.6837 + 0.0812(40) = 0.5643 

 odds = e0.5643 = 1.758 

 patient is 1.758 times more likely to be improved than not 

 Consider another patient with SurvRate = 41 

 log odds = –2.6837 + 0.0812(41) = 0.6455 

 odds = e0.6455 = 1.907 

 patient’s odds are 1.907/1.758 = 1.0846 times (or 8.5%) better than those of the previous 
patient 

 Using probabilities 

 p40 = 0.6374 and p41 = 0.6560 

 Improvements appear different with odds and with p 



Dichotomous Predictor (+1/-1 coding) 

   Consider a dichotomous predictor (X) which represents the presence 

of risk (1 = present) 

 Risk Factor (X) 

Disease (Y) Present 
              ( X   =   1 )  

  Absent 
                     ( X   =   -1 ) 

Yes (Y = 1) )11(  XYP  )11(  XYP  

No  (Y = 0) )11(1  XYP       )11(1  XYP  
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 Therefore, for the odds ratio associated with risk presence we have 

 

 Taking the natural logarithm we have 

 

 

   thus twice the estimated regression coefficient associated with a +1 / -1 coded 
dichotomous predictor is the natural log of the OR associated with risk 
presence!!! 
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Dichotomous Predictor (+1/-1 coding) 



Example: Smoking and Low Birth Weight 

954.1 

335.ˆ

670.ˆ2
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eeOR




Find a 95% CI for OR 

1st      Find a 95% CI for 1    

 

 

2nd      Compute CI for OR = (e2LCL, e2UCL)  

          

)360,.310(.025.335.)013(.96.1335.)ˆ(96.1ˆ
11   SE

(LCL,UCL) 

)05.2 , 86.1(),( 360.23102  ee

We estimate that the odds for having a low birth weight infant are between 1.86 and 2.05 times higher 

for smokers than non-smokers, with 95% confidence. 



Logistic Regression with 1 Predictor 

 a,  are unknown parameters and must be estimated using statistical 

software  

· Primary interest in estimating and testing hypotheses regarding  

· Large-Sample test (Wald Test): 

· H0:  = 0        HA:   0 
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Example - Rizatriptan for Migraine  

 Response - Complete Pain Relief at 2 hours (Yes/No) 

 Predictor - Dose (mg): Placebo (0),2.5,5,10 

Dose # Patients # Relieved % Relieved

0 67 2 3.0

2.5 75 7 9.3

5 130 29 22.3

10 145 40 27.6



Example - Rizatriptan for Migraine (SPSS) 

Variables in the Equation
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95% Confidence Interval for Odds Ratio 

 Step 1: Construct a 95% CI for  : 


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• Step 2: Raise e = 2.718 to the lower and upper bounds of the CI: 
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96.196.1 ,   ee

• If entire interval is above 1, conclude positive association 

• If entire interval is below 1, conclude negative association 

• If interval contains 1, cannot conclude there is an association 



Example - Rizatriptan for Migraine 
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• 95% CI for  : 

• 95% CI for population odds ratio: 

  )27.1,10.1(, 2375.00925.0 ee

• Conclude positive association between dose and probability of complete relief 



Multiple Logistic Regression 

 Extension to more than one predictor variable (either numeric or 

dummy variables). 

 With k predictors, the model is written: 
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• Adjusted Odds ratio for raising xi by 1 unit, holding all other predictors constant: 

ieORi




• Many models have nominal/ordinal predictors, and widely make use of dummy 

variables 



Example - ED in Older Dutch Men  

 Response: Presence/Absence of ED (n=1688) 

 Predictors:  (p=12) 

 Age stratum (50-54*, 55-59, 60-64, 65-69, 70-78) 

 Smoking status (Nonsmoker*, Smoker) 

 BMI stratum (<25*, 25-30, >30) 

 Lower urinary tract symptoms (None*, Mild, Moderate, Severe) 

 Under treatment for cardiac symptoms (No*, Yes) 

 Under treatment for COPD (No*, Yes) 

 * Baseline group for dummy variables 



Example - ED in Older Dutch Men 

Predictor b sb Adjusted OR (95% CI)

Age 55-59 (vs 50-54) 0.83 0.42 2.3   (1.0 – 5.2)

Age 60-64 (vs 50-54) 1.53 0.40 4.6   (2.1 – 10.1)

Age 65-69 (vs 50-54) 2.19 0.40 8.9   (4.1 – 19.5)

Age 70-78 (vs 50-54) 2.66 0.41 14.3   (6.4 – 32.1)

Smoker (vs nonsmoker) 0.47 0.19 1.6   (1.1 – 2.3)

BMI 25-30 (vs <25) 0.41 0.21 1.5   (1.0 – 2.3)

BMI >30 (vs <25) 1.10 0.29 3.0   (1.7 – 5.4)

LUTS Mild (vs None) 0.59 0.41 1.8   (0.8 – 4.3)

LUTS Moderate (vs None) 1.22 0.45 3.4   (1.4 – 8.4)

LUTS Severe (vs None) 2.01 0.56 7.5   (2.5 – 22.5)

Cardiac symptoms (Yes vs No) 0.92 0.26 2.5   (1.5 – 4.3)

COPD (Yes vs No) 0.64 0.28 1.9   (1.1 – 3.6)

Interpretations: Risk of ED appears to be: 

• Increasing with age, BMI, and LUTS strata 

• Higher among smokers 

• Higher among men being treated for cardiac or COPD  



Example :  Race and Low Birth Weight 

Calculate the odds for low birth weight for each race   (Low, Norm) 

White Infants (reference group, missing in parameters) 

 

Black Infants 

 

Other Infants 
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 white racefor    1-

other  racefor   1
][

 white racefor   1

black  racefor   1
][

OtherRace

BlackRace

0805.089.410.198.2)1(089.)1(410.198.2   ee

167.)0(089.)1(410.198.2 e

102.)1(089.)0(410.198.2 e

OR for Blacks vs. Whites 

= .167/.0805 = 2.075 

OR for Others vs. Whites 

= .102/.0805 = 1.267 

OR for Black vs. Others 

= .167/.102 = 1.637 



Summery 

 Basic Idea: 

 

 Logistic regression is the type of regression we use for a response variable (Y) 

that follows a binomial distribution 

 

 Linear regression is the type of regression we use for a continuous, normally 

distributed response (Y) variable 

 

 Remember the Binomial Distribution? 
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Review of the Binomial Model 

 

 
 Y ~ Binomial(n,p) n independent trials (e.g., coin tosses) 

 

 p = probability of success on each trial (e.g., p = ½ = Pr of heads) 

 

 Y = number of successes out of n trials (e.g., Y= number of heads) 
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Why can’t we use Linear Regression  

to model binary responses? 

 

  The response (Y) is NOT normally distributed 

 The variability of Y is NOT constant  

 Variance of Y depends on the expected value of Y 

 For a Y~Binomial(n,p) we have Var(Y)=pq which depends on the 

expected response, E(Y)=p 

 The model must produce predicted/fitted probabilities that are 

between 0 and 1 

 Linear models produce fitted responses that vary from -∞ to  ∞ 
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