Logistic regression

Logistic Regression

- Regression used to fit a curve to data in which the dependent variable is binary, or dichotomous
- ► Typical application: Medicine
 - ► We might want to predict response to treatment, where we might code survivors as 1 and those who don't survive as 0

Example

<u>Problem</u>: extending the regression line a few units left or right along the X axis produces predicted probabilities that fall outside of [0,1]

A Better Solution

Regression Curve: Sigmoid function!

(bounded by asymptotes y=0 and y=1)

Logit Transform

► The logit is the natural log of the odd

logit(p) = ln(odds) = ln(p/(1-p))

Logistic Regression

▶ In logistic regression, we seek a model:

$$logit(p) = b_0 + b_1 X$$

- ► That is, the log odds (logit) is assumed to be linearly related to the independent variable X
- ► So, now we can focus on solving an ordinary (linear) regression!

Logistic Response Function

▶ When the response variable is binary, the shape of the response function is often sigmoidal:

Interpretation of β 1

- Let:
 - ightharpoonup odds1 = odds for value X (p/(1-p))
 - odds2 = odds for value X + 1 unit
- ► Then:

$$\frac{odds2}{odds1} = \frac{e^{b_0 + b_1(X+1)}}{e^{b_0 + b_1X}}$$

$$= \frac{e^{(b_0 + b_1X) + b_1}}{e^{b_0 + b_1X}} = \frac{e^{(b_0 + b_1X)}e^{b_1}}{e^{b_0 + b_1X}} = e^{b_1}$$

► Hence, the exponent of the slope describes the proportionate rate at which the predicted odds ratio changes with each successive unit of X

Sample Calculations

- Suppose a cancer study yields:
 - ▶ log odds = -2.6837 + 0.0812 SurvRate
- Consider a patient with SurvRate = 40
 - \triangleright log odds = -2.6837 + 0.0812(40) = 0.5643
 - \rightarrow odds = $e^{0.5643}$ = 1.758
 - patient is 1.758 times more likely to be improved than not
- Consider another patient with SurvRate = 41
 - \triangleright log odds = -2.6837 + 0.0812(41) = 0.6455
 - \rightarrow odds = $e^{0.6455}$ = 1.907
 - patient's odds are 1.907/1.758 = 1.0846 times (or 8.5%) better than those of the previous patient
- Using probabilities
 - p40 = 0.6374 and p41 = 0.6560
 - ▶ Improvements appear different with odds and with p

Dichotomous Predictor (+1/-1 coding)

Consider a dichotomous predictor (X) which represents the presence of risk (1 = present)

$$\frac{P}{1-P} = e^{\beta_o + \beta_1 X} \begin{cases} \text{Odds for Disease with Risk Present} = \frac{P(Y=1|X=1)}{1-P(Y=1|X=1)} = e^{\beta_o + \beta_1} \\ \text{Odds for Disease with Risk Absent} = \frac{P(Y=1|X=1)}{1-P(Y=1|X=-1)} = e^{\beta_o - \beta_1} \end{cases}$$

Therefore the odds ratio (OR) =
$$\frac{\text{Odds for Disease with Risk Present}}{\text{Odds for Disease with Risk Absent}} = \frac{e^{\beta_o + \beta_1}}{e^{\beta_o - \beta_1}} = e^{2\beta_1}$$

Dichotomous Predictor (+1/-1 coding)

- ▶ Therefore, for the odds ratio associated with risk presence we have
- ► Taking the natural logarithm we have

$$OR = e^{2\beta_1}$$

thus twice the estimated regression coefficient associated with a +1 / -1 coded dichotomous predictor is the natural log of the OR associated with risk presence!!!

$$\ln(OR) = 2\beta_1$$

Example: Smoking and Low Birth Weight

Parameter Estimates

Term	Estimate	Std Error	ChiSquare	Prob>ChiSq
Intercept	-2.0608189	0.0127482	26133	0.0000*
Smoking Status[Cig]	0.33493469	0.0127482	690.28	<.0001*

 $\hat{\beta}_1 = .335$ $OR = e^{2\hat{\beta}_1} = e^{.670} = 1.954$

For log odds of Low/Norm

Find a 95% CI for OR

Find a 95% CI for
$$\beta_1$$

$$\hat{\beta}_1 \pm 1.96SE(\hat{\beta}_1) = .335 \pm 1.96 \cdot (.013) = .335 \pm .025 = (.310,.360)$$
 2nd Compute CI for OR = (e^{2LCL}, e^{2UCL})

$$(e^{2\times310}, e^{2\times.360}) = (1.86, 2.05)$$

We estimate that the odds for having a low birth weight infant are between 1.86 and 2.05 times higher for smokers than non-smokers, with 95% confidence.

Logistic Regression with 1 Predictor

- α , β are unknown parameters and must be estimated using statistical software
- Primary interest in estimating and testing hypotheses regarding β
 - Large-Sample test (Wald Test):
 - H_0 : $\beta = 0$ H_A : $\beta \neq 0$

$$T.S.: X_{obs}^2 = \left(egin{array}{c} \hat{eta} \\ \hline \hat{eta} \\ \hline \hat{\sigma}_{\hat{eta}} \end{array}
ight)^2 \ R.R.: X_{obs}^2 = \left(egin{array}{c} \hat{eta} \\ \hline \hat{\sigma}_{\hat{eta}} \end{array}
ight)^2 \ R.R.: X_{obs}^2 \geq \chi_{lpha,1}^2 \ P-val: P(\chi^2 \geq X_{obs}^2) \end{array}$$

Example - Rizatriptan for Migraine

- Response Complete Pain Relief at 2 hours (Yes/No)
- ▶ Predictor Dose (*mg*): Placebo (0),2.5,5,10

Dose	# Patients	# Relieved	% Relieved
O	67	2	3.0
2.5	75	7	9.3
5	130	29	22.3
10	145	40	27.6

Example - Rizatriptan for Migraine (SPSS)

$$\hat{\pi}(x) = \frac{e^{-2.490 + 0.165x}}{1 + e^{-2.490 + 0.165x}}$$

$$H_0: \beta = 0$$
 $H_A: \beta \neq 0$

$$T.S.: X_{obs}^2 = \left(\frac{0.165}{0.037}\right)^2 = 19.819$$

$$RR: X_{obs}^2 \ge \chi_{.05,1}^2 = 3.84$$

P - val : .000

95% Confidence Interval for Odds Ratio

▶ Step 1: Construct a 95% CI for β :

$$\hat{\beta} \pm 1.96 \hat{\sigma}_{\beta} = \left(\hat{\beta} - 1.96 \hat{\sigma}_{\beta}, \hat{\beta} + 1.96 \hat{\sigma}_{\beta}\right)$$

• Step 2: Raise e = 2.718 to the lower and upper bounds of the CI:

$$\left(e^{\hat{eta}-1.96\hat{\sigma}\hat{eta}},e^{\hat{eta}+1.96\hat{\sigma}\hat{eta}}
ight)$$

- If entire interval is above 1, conclude positive association
- If entire interval is below 1, conclude negative association
- If interval contains 1, cannot conclude there is an association

Example - Rizatriptan for Migraine

• 95% CI for β :

$$\hat{\beta} = 0.165$$
 $\hat{\sigma}_{\beta} = 0.037$
95% CI : $0.165 \pm 1.96(0.037) \equiv (0.0925, 0.2375)$

• 95% CI for population odds ratio:

$$(e^{0.0925}, e^{0.2375}) \equiv (1.10, 1.27)$$

Conclude positive association between dose and probability of complete relief

Multiple Logistic Regression

- Extension to more than one predictor variable (either numeric or dummy variables).
- ▶ With *k* predictors, the model is written:

$$\pi = \frac{e^{\alpha + \beta_1 x_1 + \dots + \beta_k x_k}}{1 + e^{\alpha + \beta_1 x_1 + \dots + \beta_k x_k}}$$

• Adjusted Odds ratio for raising x_i by 1 unit, holding all other predictors constant:

$$OR_i = e^{\beta_i}$$

 Many models have nominal/ordinal predictors, and widely make use of dummy variables

Example - ED in Older Dutch Men

- Response: Presence/Absence of ED (n=1688)
- ► Predictors: (*p*=12)
 - ► Age stratum (50-54*, 55-59, 60-64, 65-69, 70-78)
 - Smoking status (Nonsmoker*, Smoker)
 - ► BMI stratum (<25*, 25-30, >30)
 - ► Lower urinary tract symptoms (None*, Mild, Moderate, Severe)
 - ► Under treatment for cardiac symptoms (No*, Yes)
 - ► Under treatment for COPD (No*, Yes)
 - * Baseline group for dummy variables

Example - ED in Older Dutch Men

Predictor	b	$\mathbf{S_b}$	Adjusted OR (95% CI)
Age 55-59 (vs 50-54)	0.83	0.42	2.3 (1.0 - 5.2)
Age 60-64 (vs 50-54)	1.53	0.40	4.6 (2.1 - 10.1)
Age 65-69 (vs 50-54)	2.19	0.40	8.9 (4.1 - 19.5)
Age 70-78 (vs 50-54)	2.66	0.41	14.3 (6.4 - 32.1)
Smoker (vs nonsmoker)	0.47	0.19	1.6 (1.1 - 2.3)
BMI 25-30 (vs <25)	0.41	0.21	1.5 (1.0 - 2.3)
BMI > 30 (vs < 25)	1.10	0.29	3.0 (1.7 - 5.4)
LUTS Mild (vs None)	0.59	0.41	1.8 (0.8 - 4.3)
LUTS Moderate (vs None)	1.22	0.45	3.4 (1.4 - 8.4)
LUTS Severe (vs None)	2.01	0.56	7.5 (2.5 - 22.5)
Cardiac symptoms (Yes vs No)	0.92	0.26	2.5 (1.5 - 4.3)
COPD (Yes vs No)	0.64	0.28	1.9 (1.1 - 3.6)

Interpretations: Risk of ED appears to be:

- Increasing with age, BMI, and LUTS strata
- Higher among smokers
- Higher among men being treated for cardiac or COPD

Example: Race and Low Birth Weight

Parameter Estimates Std Error ChiSquare Prob>ChiSq Term Estimate Intercept -2.1979794 0.016580917572 0.00000* <.0001* Race[Black] 0.41029325 0.0190908 461.89 Race[Other] -0.08902888.27 0.0040* 0.030963For log odds of Low/Norm

 $Race[Black] = \begin{cases} +1 & \text{for race} = \text{black} \\ -1 & \text{for race} = \text{white} \end{cases}$ $Race[Other] = \begin{cases} +1 & \text{for race} = \text{other} \\ -1 & \text{for race} = \text{white} \end{cases}$

Calculate the odds for low birth weight for each race (Low, Norm)

White Infants (reference group, missing in parameters)

$$e^{-2.198+.410(-1)-.089(-1)} = e^{-2.198-.410+.089} = .0805$$

Black Infants

$$e^{-2.198+.410(+1)-.089(0)} = .167$$

Other Infants

$$e^{-2.198+.410(0)-.089(+1)} = .102$$

OR for Blacks vs. Whites

$$= .167/.0805 = 2.075$$

OR for Others vs. Whites

OR for Black vs. Others

Summery

- Basic Idea:
- Logistic regression is the type of regression we use for a response variable (Y) that follows a binomial distribution
- Linear regression is the type of regression we use for a continuous, normally distributed response (Y) variable
- Remember the Binomial Distribution?

Review of the Binomial Model

- Y ~ Binomial(n,p) n independent trials (e.g., coin tosses)
- ightharpoonup p = probability of success on each trial (e.g., p = $\frac{1}{2}$ = Pr of heads)
- Y = number of successes out of n trials (e.g., Y= number of heads)

Why can't we use Linear Regression to model binary responses?

- The response (Y) is NOT normally distributed
- The variability of Y is NOT constant
- Variance of Y depends on the expected value of Y
- ► For a Y~Binomial(n,p) we have Var(Y)=pq which depends on the expected response, E(Y)=p
- The model must produce predicted/fitted probabilities that are between 0 and 1
- Linear models produce fitted responses that vary from -∞ to ∞