Logistic regression



Logistic Regression

» Regression used to fit a curve to data in which the
dependent variable is binary, or dichotomous

» Typical application: Medicine

» We might want to predict response to treatment, where we might
code survivors as 1 and those who don’ t survive as 0




Example

1.1 NewOut by SurvRate
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FIGURE 1 §5.7 QOutcome as a function of SurvRate

Problem: extending the regression line a few units left or right along
the X axis produces predicted probabilities that fall outside of [0,1]

For each value
of SurvRate, the
number of dots
is the number
of patients with
that value of
NewOut

Regression:
Standard
linear
regression




A Better Solution

1o = NewOut by SurvRate
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FIGURE 1 5.8 More appropriate regression line for predicting outcome

Regression Curve:
Sigmoid function!

(bounded by
asymptotes y=0 and

y=1)



Logit Transform

» The logit is the natural log of the odd

» logit(p) = In(odds) = In (p/(1-p))




Logistic Regression

» In logistic regression, we seek a model:

logit(p) = b, + B X

» That is, the log odds (logit) is assumed to be linearly related to the
independent variable X

» So, now we can focus on solving an ordinary (linear) regression!




Logistic Response Function

» When the response variable is binary, the shape of the response
function is often sigmoidal:
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Interpretation of 1

» Let:
» odds1 = odds for value X (p/(1-p))
» odds2 = odds for value X + 1 unit

» Then:
odds2 e?otor(X+)

oddsl  ePotoX
e(bo+b1X)+b1 e(bo+b1X)eb1

= = =e
ebo +bO, X ebo +bH, X

b,

» Hence, the exponent of the slope describes the proportionate rate at
which the predicted odds ratio changes with each successive unit of X




Sample Calculations

» Suppose a cancer study yields:

» log odds = -2.6837 + 0.0812 SurvRate
» Consider a patient with SurvRate = 40

» log odds = -2.6837 + 0.0812(40) = 0.5643

» odds = e0-3643 = 1,758

» patient is 1.758 times more likely to be improved than not
» Consider another patient with SurvRate = 41

» log odds = -2.6837 + 0.0812(41) = 0.6455

» odds = €0-6¢455 = 1,907

» patient’ s odds are 1.907/1.758 = 1.0846 times (or 8.5%) better than those of the previous
patient

» Using probabilities
» p40 = 0.6374 and p41 = 0.6560
» Improvements appear different with odds and with p




Dichotomous Predictor (+1/-1 coding)

Consider a dichotomous predictor (X) which represents
of risk (1 = present)

~ . . . P(Y =1| X =1
| Odds for Disease with Risk Present = ——
P :eﬂo+/81x_< 1—P(Y=1| =1
1-P Odds for Disease with Risk Absent = P(Y =1| X =-1)

—

1-P(Y =1| X =
Therefore the odds  Odds for Disease with Risk Present ef*#
ratio (OR) Odds for Disease with Risk Absent e’/




Dichotomous Predictor (+1/-1 coding)

» Therefore, for the odds ratio associated with risk presence we have

» Taking the natural logarithm we have OR = e?#

thus twice the estimated regression coefficient associated with a +1 / -1 coded
dichotomous predictor is the natural log of the OR associated with risk
presence!!!

IN(OR) = 23,




Example: Smoking and Low Birth Weight

| Parameter Estimates |

Term Estimate Std Error ChiSquare Prob>ChiSqg ﬁ\ — 335
Intercept -2.0802189 0.0127482 28133 0.0o00* !
Smoking Status[Cig] 0.33453489 0.0127482 S890.28 =.0001* OR = eZ,Bl —e

For log odd= of Low/Morm

Find a 95% Cl for OR

1t Find a 95% ClI for 3,

£, £1.96SE(3,) =.335+1.96-(.013) =.335+.025 = (.:310,.36

y
2 Compute Cl for OR = (e2LCL) g2UCl) (LCL,UCL)

(62X310,62X360) — (186 | 205)

We estimate that the odds for having a low birth weight infant are between 1.86 and
for smokers than non-smokers, with 95% confidence.




Logistic Regression with 1 Predictor

« a, [ are unknown parameters and must be estimated using statistica
software

Primary interest in estimating and testing hypotheses regarding S
Large-Sample test (Wald Test):
HO: IB= 0 HA: ﬂi O

0\
T.S.: X2, = ’?

O A

~ £/

R.R.: X2, = %2,
P—val: P(x° = X2.)

obs




Example - Rizatriptan for Migraine

» Response - Complete Pain Relief at 2 hours (Yes/No)
» Predictor - Dose (mg): Placebo (0),2.5,5,10

A

# Patients # Relieved %0 Relieved
0] 67 2
2.5 75 7
5 130 29

10 145 40




Example - Rizatriptan for Migraine (SPSS)

phata‘l-’:i;;_: N\ e—2490+0165X
) 7z(X) = 1 4 @—2-490+0.165x
H.: =0 H,:8=0
o:os:g * 2
341 S TS.: X2 =(O'165j —19.819
© 1 2 3 4 5 6 7 8 9 10 0.037
RR: X2, > y2., =3.84

P —val :.000




95% Confidence Interval for Odds Ratio

» Step 1: Construct a 95% Cl for S

B+1.960 ) B—1.965, , B+1.960

e Step 2: Raise e = 2.718 to the lower and upper bounds of the Cl:

N\

eﬁ—1.9602 e,3+1.96a}
|

N\

e |f entire interval is above 1, conclude positive association
o |f entire interval is below 1, conclude negative association

e If interval contains 1, cannot conclude there is an association




Example - Rizatriptan for Migraine

« 95% Cl for g

N\

B =0.165 o5 =0.037
95% Cl : 0.165+1.96(0.037) = (0.0925,0.2375)

» 95% CI for population odds ratio:

(eo.0925 | e0.2375)E (1.10,1.27)

« Conclude positive association between dose and probability of complete relief




Multiple Logistic Regression

» Extension to more than one predictor variable (either numeric or
dummy variables).

» With k predictors, the model is written:

e05+/31X1+‘ -+ B Xk

7T = 1+ ea"'ﬁlxl""""'ﬂkxk

 Adjusted Odds ratio for raising x; by 1 unit, holding all other predictors constant:

OR, =e”

e Many models have nominal/ordinal predictors, and widely make use of dummy
variables




Example - ED in Older Dutch Men

» Response: Presence/Absence of ED (n=1688)

» Predictors: (p=12)
» Age stratum (50-54", 55-59, 60-64, 65-69, 70-78)
» Smoking status (Nonsmoker’, Smoker)
» BMI stratum (<257, 25-30, >30)
» Lower urinary tract symptoms (None’, Mild, Moderate, Severe)
» Under treatment for cardiac symptoms (No’, Yes)
» Under treatment for COPD (No’, Yes)

" Baseline group for dummy variables




Predictor

Example - ED in Older Dutch Men

Adjusted OR (9590 CI

Age 55-59 (vs 50-54) 0.83 0.42 2.3 (1.0—-5.2)
Age 60-64 (vs 50-54) 1.53 0.40 4.6 (2.1 —10.1)
Age 65-69 (vs 50-54) 2.19 0.40 8.9 4.1 —19.5)
Age 70-78 (vs 50-54) 2.66 0.41 14.3 (6.4 —32.1)
Smoker (vs nonsmoker) 0.47 0.19 1.6 (1.1 —2.3)
BMI 25-30 (vs <25) 0.41 0.21 1.5 (1.0—-2.3)
BMI >30 (vs <25) 1.10 0.29 3.0 (1.7—-5.4)
LUTS Mild (vs None) 0.59 0.41 1.8 (0.8 —-4.3)
LUTS Moderate (vs None) 1.22 0.45 34 (1.4—8.49)
LUTS Severe (vs None) 2.01 0.56 7.5 (2.5—22.5)
Cardiac symptoms (Yes vs No) 0.92 0.26 2.5 (1.5—4.3)
COPD (Yes vs NO) 0.64 0.28 1.9 (1.1 —3.6)

Interpretations: Risk of ED appears to be:

« Higher among smokers

e Increasing with age, BMI, and LUTS strata

e Higher among men being treated for cardiac or COPD




Example : Race and Low Birth Weight

| Parameter Estimates

Race[Black] =

Term Eztimate 5td Error Chisquare Prob>=Chisq
Intercept -2 15975754 0.0185309 17572 0. 0000=
Race[Black] 0.41025325 0.0190902 451.89 =<.0001* Race[Other] = {
Race[Other] 003590285 0030953 227 0.0040=

For log odd= of Low/Norm
Calculate the odds for low birth weight for each race (Low, Norm)

White Infants (reference group, missing in parameters)
-2.198+.410(-1)-.089(-1 —2.198-.410+.089
g 2198 A0N-089() _ g =059 = 0805

Black Infants OR for Blacks vs. Whites
e—2.198+.410(+1)—.089(0) — 167 = .167/.0805 = 2.075

Other Infants OR for Others vs. Whites
=.102/.0805 = 1.267

OR for Black vs. Other.
=.167/.102 = 1.637

@ —2.198+.410(0)—089(+1) _ 12



Summery

» Basic ldea:

» Logistic regression is the type of regression we use for a response variable (Y)
that follows a binomial distribution

» Linear regression is the type of regression we use for a continuous, normally
distributed response (Y) variable

» Remember the Binomial Distribution?




Review of the Binomial Model

» Y ~ Binomial(n,p) n independent trials (e.g., coin tosses)
» p = probability of success on each trial (e.g., p = ¥2 = Pr of heads)

» Y = number of successes out of n trials (e.g., Y= number of heads)




Why can’t we use Linear Regression
to model binary responses?

vV v v Vv

The response (Y) is NOT normally distributed
The variability of Y is NOT constant
Variance of Y depends on the expected value of Y

For a Y~Binomial(n,p) we have Var(Y)=pq which depends on the
expected response, E(Y)=p

The model must produce predicted/fitted probabilities that are
between 0 and 1

Linear models produce fitted responses that vary from -~ to




