Confounder & effect modifier

What are extraneous variables?

- Extraneous variables are variables that occur outside of the exposure-disease relationship.
- Extraneous variables can be:
 - confounding variables
 - effect modifying variables

Two main complications of analysis of single exposure effect

(1) Effect modifier - useful information

- bias

(2) Confounding factor

Confounding

- A confounding variable is associated with the exposure and it affects the outcome, but it is not an intermediate link in the chain of causation between exposure and outcome.
- Should be prevented or Needs to be controlled for

Confounding - Causal Diagrams

- E = Exposure
- D = Disease

C = Potential Confounder

 $E \longrightarrow D$

An apparent association between E and D is completely explained by C. C is a confounder.

An association between E and D is partly due to variations in C. C is a confounder.

C is in the causal path between E and D, a confounder.

Confounding - Causal Diagrams

C has an independent effect on D. C is not a confounder.

The effect of C on D is completely contained in E. C is not a confounder

How to prevent/control confounding?

Prevention (Design Stage)

Restriction to one stratum

Matching

Control (Analysis Stage)

- Stratified analysis
- Multivariable analysis

Restriction

- The classical procedure for preventing confounding at the design stage is restriction.
- This simply means not allowing people that are exposed to a potential confounder to participate in the study.
- Since the restricted sample does not include people exposed to the confounder the effect of the confounder cannot distort the study's estimates.

Randomization

- In randomization, an investigator randomly assigns an exposure to the study participants and then looks for an effect.
- This is NOT to be confused with random selection of a study sample.
- When the exposure is randomly assigned, the law of large numbers ensures an equal distribution of the confounder in exposed and nonexposed groups hence, no exposure-confounder association (the dotted line on the confounding triangle).
- There can therefore be no confounding.

Matching

- Matching involves making sure that groups being compared are exact matches in terms of the distribution of confounding variables.
- Matching is a type of partial restriction: it does not prevent all subjects exposed to a confounder from participating in a study, but it places some restrictions on who can participate.
- Like restriction and randomization, matching targets the left-hand side of the confounding triangle—eliminating the exposure-confounder association.

Regression models

- Regression models produce adjusted estimates (i.e., adjusted for the effects of a confounder, which is included as a variable in the model).
- In general, they involve developing a best-fitting linear equation (of the type introduced in chapter 10), or a transformed version of such a linear equation.
- Time-to-event or survival analysis methods are also used for this purpose.

Stratification

- Stratified analysis divides the contingency tables arising from a study into groups (strata).
- The groups are defined by levels of the confounding variable.
- Since confounding is caused by intermixing, unmixing through stratification will lead to a change in the estimated effect <u>if</u> the unstratified (crude) estimate was distorted by confounding.

Stratification: "Series of 2x2 tables"

Idea: Take a 2x2 table and break it into a series of smaller 2x2 tables (one table at each of J levels of the confounder yields J tables).

Example: in testing for an association between lung cancer and alcohol drinking (yes/no), separate smokers and nonsmokers.

Stratification: "Series of 2xK tables"

Idea: Take a 2xK table and break it into a series of smaller 2xK tables (one table at each of J levels of the confounder yields J tables).

Example: In evaluating the association between lung cancer and being either a teetotaler, light drinker, moderate drinker, or heavy drinker (2x4 table), separate into smokers and non-smokers (two 2x4 tables).

Choosing Confounders for Statistical Adjustment

One school says choice should be based on **a priori** considerations.

Others say choice of confounders should be based on how much they affect RR (OR, RD) when included/ excluded from the model.

Confounding: example

	Lung cancer	No lung cancer
Drinker	50	50
Non-drinker	50	150
	100	200

50% of cases are drinkers, but only 25% of controls are drinkers.

Therefore, it appears that drinking is strongly associated with lung cancer.

Confounding: example

Mantel Haenszel Methods

Mantel Haenszel Methods-Notations

	0	Outcome	
	Experienced event: D (Disease)	Did not experience event: H (Healthy)	Total
Group 1 (exposed) Group 0 (unexposed)	d_{1i} d_{0i}	h _{1i} h _{0i}	n _{1i} n _{0i}
Total	d_i	h _i	ni

Mantel Haenszel Methods common odds ratio

(1) The Mantel-Haenszel estimate of the odds ratio assumes there is a common odds ratio:

 $OR_{pool} = OR_1 = OR_2 = \dots = OR_K$

To estimate the common odds ratio we take a weighted average of the stratum-specific odds ratios:

$$OR_{MH} = \frac{\Sigma(w_i \times OR_i)}{\Sigma w_i} = \frac{\Sigma \frac{d_{1i} \times h_{0i}}{n_i}}{\Sigma \frac{d_{0i} \times h_{1i}}{n_i}}$$

Mantel Haenszel Methods common odds ratio

95% CI = OR_{MH}/EF to $OR_{MH} \times EF$, where the error factor $EF = exp(1.96 \times s.e._{MH})$

s.e._{MH} =
$$\sqrt{[V/(Q \times R)]}$$
,
 $Q = \Sigma \frac{d_{1i} \times h_{0i}}{n_i}$, $R = \Sigma \frac{d_{0i} \times h_{1i}}{n_i}$, $V = \Sigma V_i = \Sigma \frac{d_i \times h_i \times n_{0i} \times n_{1i}}{n_i^2 \times (n_i - 1)}$

Mantel Haenszel Methods common odds ratio

$$\chi^2_{MH} = \frac{(\Sigma d_{1i} - \Sigma E_{1i})^2}{\Sigma V_i} = \frac{(O - E)^2}{V} = \frac{U^2}{V}; \text{ d.f.} = 1$$
$$E_{1i} = \frac{d_i \times n_{1i}}{n_i}$$
$$O = \Sigma d_{1i}, \ E = \Sigma E_{1i} \text{ and } U = O - E$$

Controlling for confounding by stratification

```
Example: Gender Bias at Berkeley?
```

(From: Sex Bias in Graduate Admissions: Data from Berkeley, Science 187: 398-403; 1975.)

	Female	Male
Denied	1276	1486
Admitted	559	1195
	1835	2681

Crude RR = (1276/1835)/(1486/2681) =1.25 (1.20 - 1.32)

Stratum 1 = only those who applied to program A

	Female	Male	
Denied	19	314	
Admitted	89	511	
	108	825	

Stratum-specific RR = .46 (.30-.70)

Stratum 2 = only those who applied to program B

	Female	Male	
Denied	8	208	
Admitted	17	352	
	25	560	

Stratum-specific RR = 0.86 (.48-1.54)

Stratum 3 = only those who applied to program C

	Female	Male	
Denied	391	205	
Admitted	202	120	
	593	325	

Stratum-specific RR = 1.05 (.94-1.16)

Stratum 4 = only those who applied to program D

	Female	Male	
Denied	248	265	
Admitted	127	142	
	375	407	

Stratum-specific RR = 1.02 (.92-1.12)

Stratum 5 = only those who applied to program E

	Female	Male	
Denied	289	147	
Admitted	104	44	
	393	191	

Stratum-specific RR = 0.96 (.87-1.05)

Stratum 6 = only those who applied to program F

	Female	Male	
Denied	321	347	
Admitted	20	26	
	341	373	

Stratum-specific RR = 1.01 (.97-1.05)

Summary

Crude RR = 1.25 (1.20 - 1.32) Stratum specific RR's: .46 (.30-.70) 0.86 (.48-1.54) 1.05 (.94-1.16) 1.02 (.92-1.12) 0.96 (.87-1.05) 1.01 (.97-1.05)

Maentel-Haenszel Summary RR: .97

Cochran-Mantel-Haenszel Test is NS. Gender and denial of admissions

are conditionally independent given program.

The apparent association (RR=1.25) was due to confounding.

Cochran-Mantel-Haenszel Test of Conditional Independence

The (Cochran)-Mantel-Haenszel statistic tests the null hypothesis that exposure and disease are independent when conditioned on the confounder.

advantages and limitations

advantages...

- Mantel-Haenszel summary statistic is easy to interpret and calculate
- Gives you a hands-on feel for the data

disadvantages...

- Requires categorical confounders or continuous confounders that have been divided into intervals
- Cumbersome if more than a single confounder

To control for \geq 1 and/or continuous confounders, a multivariate technique (such as logistic regression) is preferable.

Effect Modification

- Effect modification occurs when the effect of an exposure is different among different subgroups. (Variation in the magnitude of measure of effect across levels of a third variable).
- Effect modification is not a bias but useful information

Happens when RR or OR is different between strata (subgroups of population) Years of Life Lost Due to Obesity (JAMA. Jan 8 2003;289:187-193)

Data from US Life Tables and the National Health and Nutrition Examination Surveys (I, II, III).

/

Race and gender modify the effect of obesity on years-oflife-lost.

70

60

50

40

30

20

10

(Low)

Percentage of Cases

Among white women, stage of breast cancer at detection is associated with education.

r) (High) Quintiles of Education □Local □Regional ■Distant

Note. Quintiles of education are based on the percentage of individuals with at least a high school degree: Q1 (<59.7), Q2 (59.7–67.4), Q3 (67.5–73.5), Q4 (73.6–81.0), and Q5 (\geq 81.1). Chi-square tests for association and trend yielded *P* < .05.

However, no clear pattern among black women.

Statistical tests for homogeneity

- Statistical tools can help determine whether 2 stratum-specific estimates are homogeneous.
- In stratified analysis, a test called the Mantel-Haenszel test for homogeneity is commonly employed.
- In modelling, tests for statistical interaction between exposure and potentially modifying variables are often used. These are called tests of interaction.
- The identification of effect modification is a key task in epidemiological analysis. While good procedures exist to test for it, judgement is also needed.

Statistical tests for homogeneity

$$\chi^{2} = \Sigma \frac{\left(d_{1i} \times h_{0i} - \mathrm{OR}_{MH} \times d_{0i} \times h_{1i}\right)^{2}}{\mathrm{OR}_{MH} \times V_{i} \times n_{i}^{2}}, \ \mathrm{d.f.} = c - 1$$

summarize

Effect modifier

Belongs to nature

Different effects in different strata Simple Useful Increases knowledge of biological mechanism Allows targeting of public health action

Confounding factor

Belongs to study Adjusted OR/RR different from crude OR/RR Distortion of effect Creates confusion in data Prevent (design) Control (analysis)

summarize

Randomization breaks any links between treatment and prognostic factors

