The Binomial Distribution

binomial distribution is a discrete distribution.

Binomial Experiment

- ► A <u>binomial experiment</u> has the following properties:
 - experiment consists of n identical and independent trials
 - each trial results in one of two outcomes: success or failure
 - ► P(success) = p
 - ► P(failure) = q = 1 p for all trials
 - ► The random variable of interest, X, is the number of successes in the n trials.
 - X has a binomial distribution with parameters n and p

What is P(x) for binomial?

$$P(x) = \frac{n!}{x!(n-x)!} p^{x} q^{n-x}$$

Mean and Standard Deviation

► The mean (expected value) of a binomial random variable is

$$\mu = np$$

► The standard deviation of a binomial random variable is

$$\sigma = \sqrt{npq}$$

Example

- ► Random Guessing; n = 100 questions.
 - ► Probability of correct guess; p = 1/4
 - ► Probability of wrong guess; q = 3/4
 - Expected Value = $\mu = np = 100 \left(\frac{1}{4}\right) = 25$
 - ▶ On average, you will get 25 right.
- Standard Deviation = $\sigma = \sqrt{npq} = \sqrt{np(1-p)} = \sqrt{100\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)} = 4.33$

- **Exposure** (E) \equiv an explanatory factor; any potential health determinant; the independent variable.
- Disease (D) ≡ the response; any health-related outcome; the dependent variable.
- Measure of association (syn. measure of effect) \equiv a statistic that quantifies the relationship between an exposure and a disease.

Risk Difference

Risk Difference (RD) = absolute effect associated with exposure

$$RD = R_1 - R_0$$

where

 $R_1 \equiv \text{risk in the exposed group}$

 $R_0 \equiv \text{risk in the non-exposed group}$

Risk ratio

Numerator Risk of disease in exposed

Denominator
Risk of disease in unexposed

Risk ratio interpretation

- Ratios > 1.0 indicate rate is higher among exposed than unexposed
- Ratios = 1.0 indicate no association
- Ratios < 1.0 indicate rate is lower among exposed than unexposed

- Take natural log of risk ratio ln (Risk ratio)
- 2. Estimate standard error (SE)

$$\sqrt{\left(\frac{1}{a}\right) - \left(\frac{1}{a+b}\right) + \left(\frac{1}{c}\right) - \left(\frac{1}{c+d}\right)}$$

- 3. Estimate upper and lower bounds on log scale
 - 95% confidence interval upper bound ln(Risk ratio) + 1.96(SE[ln(Risk ratio)])
 - 95% confidence interval lower bound ln(Risk ratio) - 1.96(SE[ln(Risk ratio)])

- 4. Exponentiate upper and lower bounds
- 5. Report and interpret estimate and confidence interval

- Measure association between family history of Alzheimer's disease (AD) and incidence of AD among those aged >70
- Random sample of 1,000 individuals aged >70, no symptoms of AD
- ► Followed for 20 years
- Measure symptoms of AD every year
- ► No losses to follow-up

Risk ratio =
$$\frac{\left(\frac{50}{350}\right)}{\left(\frac{60}{650}\right)} = 1.548$$

1. Take natural log of risk ratio

$$ln (Risk ratio) = ln(1.548) = 0.437$$

2. Estimate standard error (SE)

$$\sqrt{\left(\frac{1}{a}\right) - \left(\frac{1}{a+b}\right) + \left(\frac{1}{c}\right) - \left(\frac{1}{c+d}\right)}$$

SE(Ln[Risk ratio]) =
$$\sqrt{\left(\left(\frac{1}{50}\right) - \left(\frac{1}{350}\right) + \left(\frac{1}{60}\right) - \left(\frac{1}{650}\right)\right)} = 0.1796$$

- 3. Estimate upper and lower bounds on log scale
 - 95% confidence interval upper bound ln(Risk ratio) + 1.96(SE[ln(Risk ratio)])
 0.437 + 1.96(0.1796)
 - 95% confidence interval lower bound ln(Risk ratio) - 1.96(SE[ln(Risk ratio)])
 0.437 - 1.96(0.1796)

4. Exponentiate upper and lower bounds

$$e^{.789} = 2.20$$

$$e^{.085} = 1.09$$

5. Report and interpret estimate and confidence interval

Individuals >70 in Farrlandia with a family history of AD had 1.55 times the risk of developing AD over 20 years, with a 95% confidence interval for the risk ratio of 1.09 to 2.20.

Comparison of RR and RD

 $RR \Rightarrow$ strength of effect $RD \Rightarrow$ effect in absolute terms

Rates (per 100000) of Lung CA & CHD assoc. w/smoking

	Smoker	Nonsmoke	RR	RD
LungCA	104	10	10.40	94
CHD	565	413	1.37	152

Smoking ⇒ Stronger effect for LungCA

Smoking ⇒ Causes more CHD

Odds ratio

Numerator

Odds of disease in exposed

Denominator

▶ Odds of disease in unexposed

Example A: odds ratio

Odds of ADHD among exposed

$$\frac{\left(\frac{300}{5000}\right)}{1 - \left[\frac{300}{5000}\right]} = 0.064$$

Odds of ADHD among unexposed

$$\frac{\left(\frac{200}{5000}\right)}{1 - \left[\frac{200}{5000}\right]} = 0.042$$

Odds ratio

$$\frac{0.064}{0.042} = 1.53$$

Example A: odds ratio interpretation

The odds of developing ADHD in the first 10 years of life among those exposed are 1.53 times the odds of disease in the unexposed.

- Take natural log of odds ratio ln (Odds ratio)
- 2. Estimate standard error (SE)

$$\sqrt{\left(\frac{1}{a}\right) + \left(\frac{1}{b}\right) + \left(\frac{1}{c}\right) + \left(\frac{1}{d}\right)}$$

- 3. Estimate upper and lower bounds on log scale
 - 95% confidence interval upper bound ln(Odds ratio) + 1.96(SE[ln(Odds ratio)])
 - 95% confidence interval lower bound ln(Odds ratio) - 1.96(SE[ln(Odds ratio)])

- 4. Exponentiate upper and lower bounds
- 5. Report and interpret estimate and confidence interval

Summary: odds ratio

- Cannot estimate the risk of disease directly when we sample people based on whether they have the disease or not (case control study)
- Can estimate proportion exposed among diseased and nondiseased
 - Estimate odds ratio for exposure
 - Odds ratio for exposure = odds ratio for disease
- ▶ If disease is rare in population, the odds ratio approximates the risk ratio from a prospective study

Terminology

For simplicity sake, the terms "risk" and "rate" will be applied to all incidence and prevalence measures.

What do you do when you have multiple levels of exposure?

Compare rates to least exposed "reference" group

	LungCA Rate (per 100,000 person-years)	RR
Non-smoker (0)	10	1.0 (ref.)
Light smoker (1)	52	5.2
Mod. smoker (2)	106	10.6
Heavy sm. (3)	224	22.4

$$RR_1 = \frac{R_1}{R_0} = \frac{52}{10} = 5.2$$

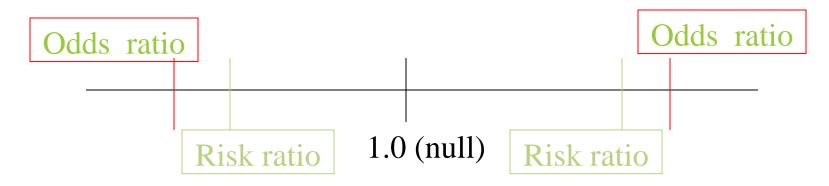
$$RR_2 = \frac{R_2}{R_0} = \frac{106}{10} = 10.6$$

OR versus RR Key Messages

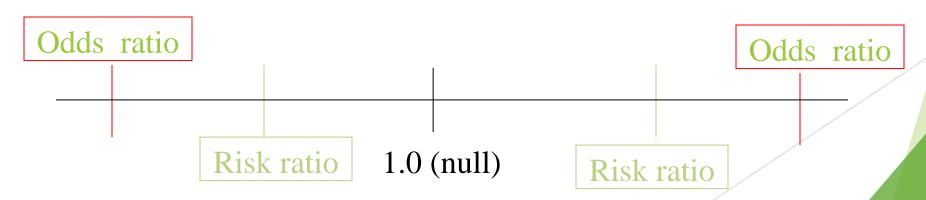
- ▶ Odds and Odds Ratios are difficult to conceptualize but statisticians prefer them in some situations because of their mathematical properties
- ▶ Odds Ratios always exaggerate the relative risk, but when baseline risk is low (e.g. <10%), the OR approximates the relative risk
- Relative Risk is a more intuitive measure and is becoming more common in medical literature

The odds ratio vs. the risk ratio

Rare Outcome

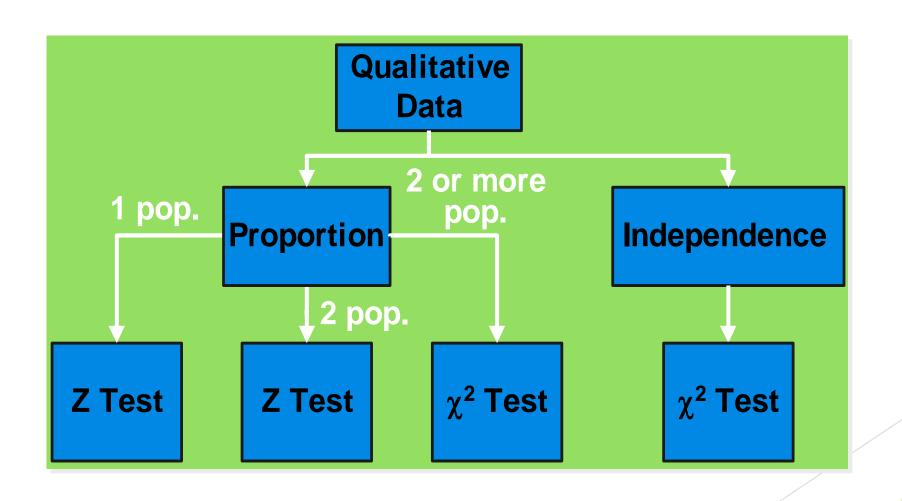


Common Outcome



Chi-Square Applications

Hypothesis Tests Qualitative Data



Z Test for Differences in Two Proportions

Hypotheses for Two Proportions

	Research Questions				
Hypothesis	No Difference Any Difference	Pop 1 ≥ Pop 2 Pop 1 < Pop 2	Pop 1 ≤ Pop 2 Pop 1 > Pop 2		
H ₀	$p_1 - p_2 = 0$	$p_1 - p_2 \ge 0$	$p_1 - p_2 \le 0$		
H _a	$p_1 - p_2 \neq 0$	$p_1 - p_2 < 0$	$p_1 - p_2 > 0$		

Z Test for Difference in Two Proportions

- 1. Assumptions
 - Populations Are Independent
 - Populations Follow Binomial Distribution
 - Normal Approximation Can Be Used for large samples (All Expected Counts ≥ 5)
- 2. Z-Test Statistic for Two Proportions

$$Z \cong \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\hat{p} \cdot (1 - \hat{p}) \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \quad \text{where } \hat{p} = \frac{X_1 + X_2}{n_1 + n_2}$$

Goodness-of-Fit Tests

▶ Does the distribution of sample data resemble a specified probability distribution

- Hypotheses:
 - ► H_0 : π_i = values expected H_1 : π_i ≠ values expected where $\sum \pi_j = 1$.

Goodness-of-Fit Tests

► Test Statistic:

$$\chi^2 = \sum \frac{(O_j - E_j)^2}{E_j}$$

where O_j = Actual number observed in each class E_j = Expected number, $p_j \cdot n$

Goodness-of-Fit: An Example

In a study of vehicle ownership, it has been found that 13.5% of U.S. households do not own a vehicle, with 33.7% owning 1 vehicle, 33.5% owning 2 vehicles, and 19.3% owning 3 or more vehicles. The data for a random sample of 100 households in a resort community are summarized below. At the 0.05 level of significance, can we reject the possibility that the vehicle-ownership distribution in this community differs from that of the nation as a whole?

# Vehicles Owned	# Households
0	20
1	35
2	23
3 or more	22

Goodness-of-Fit: An Example

# Vehicles	<u>O</u> _j	<u> </u>	[O _j - E _j] ² / E _j
0	20	13.5	3.1296
1	35	33.7	0.0501
2	23	33.5	3.2910
3+	22	19.3	0.3777
		Sum =	6.8484

I.
$$H_0$$
: $\pi_0 = 0.135$, $\pi_1 = 0.337$, $\pi_2 = 0.335$, $\pi_{3+} = 0.193$

Vehicle-ownership distribution in this community is the same as it is in the nation as a whole.

 H_1 : At least one of the proportions does not equal the stated value. Vehicle-ownership distribution in this community is <u>not</u> the same as it is in the nation as a whole.

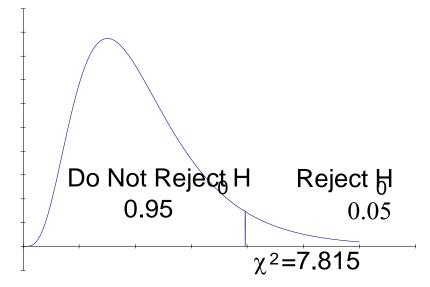
Goodness-of-Fit: An Example

II. Rejection Region:

$$\alpha = 0.05$$
 $df = k - 1 = 4 - 1 = 3$

III. Test Statistic:

$$\chi^2 = 6.8484$$



- **IV. Conclusion:** Since the test statistic of χ^2 = 6.8484 falls below the critical value of χ^2 = 7.815, we do not reject H₀ with at least 95% confidence.
- V. Implications: There is not enough evidence to show that vehicle ownership in this community differs from that in the nation as a whole.

χ^2 Test of Independence

- 1. Shows If a Relationship Exists Between 2 Qualitative Variables, but does **Not** Show Causality
- 2. Assumptions

Multinomial Experiment

All Expected Counts = 5

3. Uses Two-Way Contingency Table

χ^2 Test of Independence Contingency Table

Levels of variable 2

	Ræsid	_	
Disease Status	Urban	Rural	Total
Disease	63	49	112
No disease	15	33	48
Total	78	82	160

Levels of variable 1

χ² Test of Independence Hypotheses & Statistic

1. Hypotheses

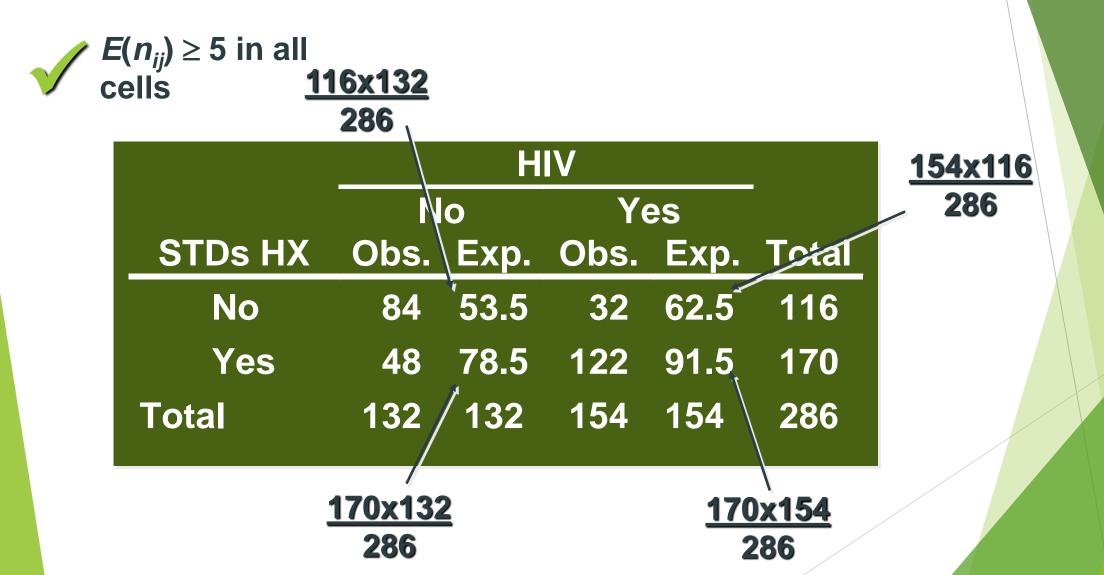
- ► H₀: Variables Are Independent
- ► H_a: Variables Are Related (Dependent)

χ^2 Test of Independence Example on HIV

► You randomly sample **286** sexually active individuals and collect information on their HIV status and History of STDs. At the **.05** level, is there evidence of a **relationship**?

	HIV		
STDs Hx	No	Yes	Total
No	84	32	116
Yes	48	122	170
Total	132	154	286

χ^2 Test of Independence Solution



χ² Test of Independence Solution

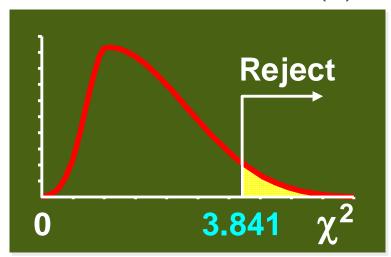
Ho: No Relationship

Ha: Relationship

$$\alpha = .05$$

$$df = (2 - 1)(2 - 1) = 1$$

Critical Value(s):



Test Statistic:

$$\chi^2 = 54.29$$

Decision:

Reject at $\alpha = .05$

Conclusion:

There is evidence of a relationship

Fisher's Exact Test

- Fisher's Exact Test is a test for independence in a 2 X 2 table. It is most useful when the total sample size and the expected values are small. The test holds the marginal totals fixed and computes the hypergeometric probability that n_{11} is at least as large as the observed value
- ▶ Useful when E(cell counts) < 5.

Fisher's Exact Test

Example: 2x2 table with cell counts a, b, c, d. Assuming marginal totals are fixed:

```
M1 = a+b, M2 = c+d, N1 = a+c, N2 = b+d.
for convenience assume N1<N2, M1<M2.
possible value of a are: 0, 1, ...min(M1,N1).
```

Probability distribution of cell count a follows a hypergeometric distribution:

$$N = a + b + c + d = N1 + N2 = M1 + M2$$

- ightharpoonup Pr (x=a) = N1!N2!M1!M2! / [N!a!b!c!d!]
- Fisher exact test is based on this hypergeometric distr.

Fisher's Exact Test Example

HIV Infection

Hx of STDs

	yes	no	total
yes	3	7	10
no	5	10	15
total	8	17	

Is HIV Infection related to Hx of STDs in Sub Saharan African Countries? Test at 5% level.

Fisher's Exact Test Example

Probability of observing this specific table given fixed marginal totals is

```
Pr (3,7, 5, 10) = 10!15!8!17!/[25!3!7!5!10!]
= 0.3332
```

- ▶ Note the above is not the p-value. Why?
- Not the accumulative probability, or not the tail probability.
- ► Tail prob = sum of all values (a = 3, 2, 1, 0).

Fisher's Exact Test Example

```
Pr (2, 8, 6, 9) = 10!15!8!17!/[25!2!8!6!9!]
= 0.2082
Pr (1, 9, 7, 8) = 10!15!8!17!/[25!1!9!7!8!]
= 0.0595
Pr (0,10, 8, 7) = 10!15!8!17!/[25!0!10!8!7!]
= 0.0059
```

Pearson Chi-squares test Yates correction

Pearson Chi-squares test

$$\chi^2 = \sum_i (O_i - E_i)^2 / E_i$$
 follows a chi-squares distribution with df = (r-1)(c-1)

if
$$E_i \ge 5$$
.

▶ Yates correction for more accurate p-value

$$\chi^2 = \sum_i (|O_i - E_i| - 0.5)^2 / E_i$$

when O_i and E_i are close to each other.

Chi square test for trend

▶ 1 variable is binary and the other is ordered categorical and we want to assess whether the association between the variables follows a trend.

Chi square test for trend

$$U = \Sigma(dx) - \frac{O}{N}\Sigma(nx)$$
 and $V = \frac{O(N-O)}{N^2(N-1)}[N\Sigma(nx^2) - (\Sigma nx)^2]$

$$\chi^2_{\text{trend}} = \frac{U^2}{V}, \text{d.f.} = 1$$

Where

dx= the product of the observed number and the exposure group score nx= the product of the total and the exposure group score nx2= the product of the total and the square of exposure group score

Chi square test for trend example

Age at menarche	Triceps skinfold group			
	Small	Intermediate	Large	Total
< 12 years (D)	15 (8.8%)	29 (12.8%)	36 (19.4%)	80
12+ years (H)	156 (91.2%)	197 (87.2%)	150 (80.6%)	503
Total	171 (100%)	226 (100%)	186 (100%)	583
Exposure group score (x)	0	1	2	
Odds of early menarche	0.10 (0.06 to 0.16)	0.15 (0.10 to 0.22)	0.24 (0.17 to 0.35)	
Log odds	-2.34 (-2.87 to -1.81)	-1.92 (-2.31 to -1.53)	-1.43 (-1.79 to -1.06)	

In this example difference log odds between (small & intermediate) groups is not equal to (intermediate and large) groups. It seems there is a trend.

Chi square test for trend example

$$\Sigma(dx) = 15 \times 0 + 29 \times 1 + 36 \times 2 = 101$$

$$\Sigma(nx) = 171 \times 0 + 226 \times 1 + 186 \times 2 = 598$$

$$\Sigma(nx^2) = 171 \times 0 + 226 \times 1 + 186 \times 4 = 970$$

$$O = 80, \ N = 583, \ N - O = 503$$

$$U = 101 - \left(\frac{80}{583} \times 598\right) = 18.9417$$

$$V = \left(\frac{80 \times 503}{583^2 \times 582}\right) \times (583 \times 970 - 598^2) = 42.2927$$

 $\chi^2_{\text{trend}} = \frac{(18.9417)^2}{42.2927} = 8.483, \quad \text{d.f.} = 1, \quad P = 0.0036.$