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Simple Linear Regression



Learning Objectives

 Introduce the straight-line (simple linear regression)
model as a means of relating one quantitative variable
to another quantitative variable

 Introduce the correlation coefficient as a means of
relating one quantitative variable to another
quantitative variable

 Assess how well the simple linear regression model fits
the sample data

 Employ the simple linear regression model for predicting
the value of one variable from a specified value of
another variable



An example
ID Age    Chol (mg/ml)

1 46 3.5

2 20 1.9

3 52 4.0

4 30 2.6

5 57 4.5

6 25 3.0

7 28 2.9

8 36 3.8

9 22 2.1

10 43 3.8

11 57 4.1

12 33 3.0

13 22 2.5

14 63 4.6

15 40 3.2

16 48 4.2

17 28 2.3

18 49 4.0

Age and cholesterol 

levels in 18 individuals



Questions of interest

 Association between age and cholesterol levels

 Strength of association

 Prediction of cholesterol for a given age

Correlation and Regression analysis



Variance and covariance: algebra

 Let x and y be two random variables from a sample of n 

observations.

 Measure of variability of x and y: variance
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• Measure of covariation between x and y ?

• Algebraically:

var(x + y) = var(x) + var(y)

var(x + y) = var(x) + var(y) + 2cov(x,y)

Where:
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Meaning of variance and covariance

 Variance is always positive

 If covariance = 0, x and y are independent.

 Covariance is sum of cross-products: can be positive or negative.

 Negative covariance = deviations in the two distributions in are

opposite directions, e.g. genetic covariation.

 Positive covariance = deviations in the two distributions in are in

the same direction.

 Covariance = a measure of strength of association.



Covariance and correlation

 Covariance is unit-depenent. 

 Coefficient of correlation (r) between x and y is a standardized 

covariance.

 r is defined by:
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Coefficient of Correlation
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Coefficient of Correlation



Coefficient of Correlation



Coefficient of Correlation



Test of hypothesis of correlation

 Hypothesis: Ho: r = 0 versus Ho: r not equal to 0.

 Standard error of r is: 

 The t-statistic:
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Test of hypothesis of correlation

• Fisher’s z-transformation:

• Standard error of z: 

• Then 95% CI of z can be constructed as: 
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 Hypothesis: Ho: r = r0 versus Ho: r ≠ r0.



An illustration of correlation analysis
ID Age   Cholesterol

(x)   (y; mg/100ml)

1 46 3.5

2 20 1.9

3 52 4.0

4 30 2.6

5 57 4.5

6 25 3.0

7 28 2.9

8 36 3.8

9 22 2.1

10 43 3.8

11 57 4.1

12 33 3.0

13 22 2.5

14 63 4.6

15 40 3.2

16 48 4.2

17 28 2.3

18 49 4.0

Mean 38.83 3.33

SD 13.60 0.84

Cov(x, y) = 10.68
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t-statistic = 0.56 / 0.26 = 2.17

Critical t-value with 17 df and alpha = 5%  is 2.11

Conclusion: There is a significant association between 

age and cholesterol.



In general, simple linear regression finds the best straight

line for describing the relationship between two variables.

In its simplest form, which is what we consider here, it

does not do a very good job of assessing how well the line

describes the data, but nevertheless provides useful

information.

Simple linear regression analysis



Simple linear regression analysis

 Assessment:
 Quantify the relationship between two variables

 Prediction
 Make prediction and validate a test

 Control
 Adjusting for confounding effect (in the case of multiple variables)

• Only two variables are of interest: one response variable 

and one predictor variable

• No adjustment is needed for confounding or covariate



Relationship between age and cholesterol
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The goal of least square estimator (LSE) is to find a and b such that the sum of d2 is 

minimal.

Criteria of estimation



Linear regression: model

 Y : random variable representing a response

 X : random variable representing a predictor variable (predictor, 
risk factor)

 Y is a continuous variable (e.g., chol level) and X can be a categorical 
variable (e.g., yes / no) or a continuous variable (e.g., age). 

 Model

Y = a + bX + e

a : intercept

b : slope / gradient

e  : random error (variation between subjects in y even if x is constant, e.g., variation 
in cholesterol for patients of the same age.)



Linear regression: assumptions

 The relationship is linear in terms of the parameter;

 X is measured without error; 

 The values of Y are independently from each other (e.g., Y1 is 

not correlated with Y2) ;

 The random error term (e) is normally distributed with mean 0 

and constant variance.



Expected value and variance

 If the assumptions are tenable, then: 

 The expected value of Y is: E(Y | x) = a + bx

 The variance of Y is: var(Y) = var(e) = s2



Estimation of a and b

 For a series of pairs: (x1, y1), (x2, y2), (x3, y3), …, (xn, yn)

 Let a and b be sample estimates for parameters a and b, 

 We have a sample equation:  Y* = a + bx

 Aim: finding the values of a and b so that (Y – Y*) is minimal. 

 Let SSE = sum of (Yi – a – bxi)
2.

 Values of a and b that minimise SSE are called least square 

estimates.



Estimation of a and b

 After some calculus operations, the results can be shown 

to be: 
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Where:

• When the regression assumptions are valid, the estimators of a and b

have the following properties:

– Unbiased

– Uniformly minimal variance (eg efficient)



a = Intercept, that is, the point where the line crosses  the

y-axis, which is the value of y at x = 0.

b = Slope of the regression line, that is, the number of units of

increase (positive slope) or decrease  (negative slope) in y

for each unit increase in x.

      

     

1 unit of x

b units of y

y = a + bx

0                                                      x-axis                               

Independent Variable 

y-axis

Dependent variable

a



Testing for Significance

To test for a significant regression relationship, we must

conduct a hypothesis test to determine whether the value of

b1 is zero.

Two tests are commonly used:

t Test and F Test

Both the t test and F test require an estimate of s 2, the variance 

of e in the regression model.



If the regression line is flat in the sense that the regression

estimate of Y, being ŷ, is the same for all values of x, then

there is no gain from considering the x variable as it is

having no impact on ŷ. This situation occurs when the

estimated slope b = 0. An important question is whether or

not the population parameter b = 0, that is, whether the

truth is that there is no linear relationship between y and x.

To test this situation, we can proceed with a formal test.

Regression ANOVA 



1. The Hypothesis: H0: b = 0 vs H1: b ≠ 0

2. The a level: a = 0.05

3. The assumptions:   Random normal samples for y-

variable from populations defined        

by x-variable

4. The test statistic:

5. The rejection region : Reject H0: b = 0 if the value 

calculated for F is greater than 

F0.95(1, n-2) 

Source df SS MS F

Regression 1 SS(Reg ) SS(Reg )/1 MS(Reg )/MS(Res )

Residual n-2 SS(Res ) SS(Res )/(n-2)

Total n-1 SS(y)

ANOVA



Partitioning of variations: concept

 SST = sum of squared difference between yi and the mean of y. 

 SSR = sum of squared difference between the predicted value of y
and the mean of y. 

 SSE = sum of squared difference between the observed and 
predicted value of y. 

SST = SSR + SSE

The the coefficient of determination is:      R2 = SSR / SST
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Partitioning of variations: geometry

Chol (Y)

Age (X)

mean

SSR

SSE

SST



Partitioning of variations: algebra

• Some statistics:

• Total variation:

• Attributed to the model:

• Residual sum of square: 

• SST = SSR + SSE

• SSR = SST – SSE
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t tests in regression analysis

 Now, we have

Sample data: Y = a + bX + e

Population: Y = a + bX + e

 Ho: b = 0. There is no linear association between the
outcome and predictor variable.

 In layman language: “what is the chance, given the
sample data that we observed, of observing a sample
of data that is less consistent with the null hypothesis
of no association?”



Inference about slope (parameter b)

 Recall that e is assumed to be normally distributed 

with mean 0 and variance = s2.  

 Estimate of s2 is MSE (or s2)

 It can be shown that 

 The expected value of b is b, i.e.   E(b) = b, 

 The standard error of b is: 

 Then the test whether b = 0 is:  t = b / SE(b) which 

follows a t-distribution with n-1 degrees of freedom.
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Prediction With Regression Models

 Types of predictions

 Point estimates

 Interval estimates

 What is predicted

 Population mean response E(y) for given x

 Point on population regression line

 Individual response (yi) for given x



What Is Predicted

Mean y, E(y)

y
y

Individual

Prediction, ŷ

x
xP



A 100(1 – a)% Confidence Interval 

Estimate for the Mean Value of y at x = xp
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Confidence interval around predicted 

valued

 Observed value is Yi.   

 Predicted value is 

 The standard error of the predicted value is: 

• Interval estimation for Yi values
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Confidence Intervals v. Prediction Intervals

x

y

x



Checking assumptions

 Assumption of constant variance

 Assumption of normality

 Correctness of functional form

 Model stability

 All can be conducted with graphical analysis. The residuals
from the model or a function of the residuals play an
important role in all of the model diagnostic procedures.



Basic Assumptions of the Probability 

Distribution



Checking assumptions

 Assumption of constant variance

 Plot the studentized residuals versus their predicted values. Examine
whether the variability between residuals remains relatively constant
across the range of fitted values.

 Assumption of normality

 Plot the residuals versus their expected values under normality (Normal
probability plot). If the residuals are normally distributed, it should fall
along a 45o line.

 Correct functional form?

 Plot the residuals versus fitted values. Examine whether the residual plot
for evidence of a non-linear trend in the value of the residual across the
range of fitted values.

 Model stability

 Check whether one or more observations are influential. Use Cook’s
distance.



Checking assumptions (Cont)

 Cook’s distance (D) is a measure of the magnitude by

which the fitted values of the regression model change if

the ith observation is removed from the data set.

 Leverage is a measure of how extreme the value of xi is

relative to the remaining value of x.

 The Studentized residual provides a measure of how

extreme the value of yi is relative to the remaining value

of y.



Some comments: 

Interpretation of correlation

 Correlation lies between –1 and +1. A very small correlation does
not mean that no linear association between the two variables.
The relationship may be non-linear.

 For curlinearity, a rank correlation is better than the Pearson’s
correlation.

 A small correlation (eg 0.1) may be statistically significant, but
clinically unimportant.

 R2 is another measure of strength of association. An r = 0.7 may
sound impressive, but R2 is 0.49!

 Correlation does not mean causation.



The following data are diastolic blood pressure (DBP)

measurements taken at different times after an

intervention for n = 5 persons. For each person, the

data available include the time of the measurement and

the DBP level. Of interest is the relationship between

these two variables.

Example:



Time DPB

Patient x x2 y y2 xy

1 0 0 72 5,184 0

2 5 25 66 4,356 330

3 10 100 70 4,900 700

4 15 225 64 4,096 960

5 20 400 66 4,356 1,320

Sum 50 750 338 22,892 3,310

Mean 10 67.6

n 5 5



For the blood pressure data,  

 the slope is  
 

and the intercept is 

 

The best line is 
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  Time  DBP 

Patient  x  y 

1  0  72 

2  5  66 
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Blood Pressure Example



 

ANOVA 

Source df SS MS F 

Regression 1 19.6 19.6 2.49 
Residual 3 23.6 7.89  

Total 4 43.2   
 

H0 : b = 0    vs    H1 : b  0 
 

For  a = 0.05 F0.95(1,3) = 10.1, Hence accept H0 : b = 0 

 

    4537.0
2.43

6.19

)(

)(2 
TotalSS

RegressionSS
R    or   45.37% 

 

Note: The above hypothesis test does not asses how 

well the straight line fits the data. 



Multiple linear regression



Multiple Linear regression



Estimation of Parameters in Multiple 

Regression



Estimation of Parameters in Multiple 

Regression

• The least squares normal equations are

the solution to the normal equations are the least 

squares estimators of the regression coefficients.



Multiple Regression example:



Multiple Regression example:



Estimation of Parameters in Multiple 

Regression



Analysis of variance

 SS increases in proportion to sample size (n)

 Mean squares (MS): normalise for degrees of freedom (df)

 MSR = SSR / p (where p = number of degrees of freedom)

 MSE = SSE / (n – p – 1)

 MST = SST / (n – 1)

• Analysis of variance (ANOVA) table:

Source d.f. Sum of 

squares 

(SS)

Mean 

squares 

(MS)

F-test

Regression

Residual

Total

p

N–p –1

n – 1

SSR

SSE

SST

MSR

MSE

MSR/MSE



Inferences in Multiple Regression

Test for Significance of Regression



Inferences in Multiple Regression

Inference on Individual Regression Coefficients

•This is called a partial or marginal test



Confidence Intervals on the Mean Response 
and Prediction Intervals

Inferences in Multiple Regression



Confidence Intervals on the Mean Response 
and Prediction Intervals

Inferences in Multiple Regression



A Test for the Significance of a Group of Regressors

Inferences in Multiple Regression


