Confidence Interval Estimation

Objectives

- In this chapter, you learn:
- To construct and interpret confidence interval estimates for the population mean and the population proportion.
- To determine the sample size necessary to develop a confidence interval for the population mean or population proportion.

Chapter Outline

Content of this chapter

Confidence Intervals for the Population Mean, µ

 \blacktriangleright when Population Standard Deviation σ is Known

 \blacktriangleright when Population Standard Deviation σ is Unknown

Determining the Required Sample Size

Point and Interval Estimates

- ► A point estimate is a single number,
- a confidence interval provides additional information about the variability of the estimate

Point Estimates

We can estimate a Population Parameter		with a Sample Statistic (a Point Estimate)
Mean	μ	X
Proportion	π	р

Confidence Intervals

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Such interval estimates are called confidence intervals

Confidence Interval Estimate

An interval gives a range of values:

- Takes into consideration variation in sample statistics from sample to sample
- Based on observations from 1 sample
- Gives information about closeness to unknown population parameters
- Stated in terms of level of confidence
 - ▶e.g. 95% confident, 99% confident
 - Can never be 100% confident

Estimation Process

General Formula

The general formula for all confidence intervals is:

Point Estimate ± (Critical Value)(Standard Error)

Where:

• Point Estimate is the sample statistic estimating the population parameter of interest

 Critical Value is a table value based on the sampling distribution of the point estimate and the desired confidence level

• Standard Error is the standard deviation of the point estimate

Confidence Level

Confidence the interval will contain the unknown population parameter

A percentage (less than 100%)

Confidence Level, $(1-\alpha)$

- Suppose confidence level = 95%
- ► Also written (1 α) = 0.95, (so α = 0.05)
- A relative frequency interpretation:
 - 95% of all the confidence intervals that can be constructed will contain the unknown true parameter
- A specific interval either will contain or will not contain the true parameter
 - No probability involved in a specific interval

Confidence Interval for μ (σ Known)

Assumptions

 \blacktriangleright Population standard deviation σ is known

- Population is normally distributed
- If population is not normal, use large sample (n > 30)

Confidence interval estimate:

 $X \pm Z_{\alpha/2}$ -

where

 $\overline{\chi}$ is the point estimate $Z_{\alpha/2}$ is the normal distribution critical value for a probability of $\alpha/2$ in each tail σ/\sqrt{n} is the standard error

Finding the Critical Value, $Z_{\alpha/2}$

Consider a 95% confidence interval:

Common Levels of Confidence

Commonly used confidence levels are 90%, 95%, and 99%

Confidence Level	Confidence Coefficient, $1-\alpha$	$Z_{\alpha/2}$ value
80%	0.80	1.28
90%	0.90	1.645
95%	0.95	1.96
98%	0.98	2.33
99%	0.99	2.58
99.8%	0.998	3.08
99.9%	0.999	3.27

Intervals and Level of Confidence

Do You Ever Truly Know σ?

Probably not!

- > In virtually all real world business situations, σ is not known.
- For the second second
- If you truly know µ there would be no need to gather a sample to estimate it.

Confidence Interval for μ (σ Unknown)

If the population standard deviation σ is unknown, we can substitute the sample standard deviation, S

This introduces extra uncertainty, since S is variable from sample to sample

So we use the t distribution instead of the normal distribution

Confidence Interval for μ (σ Unknown)

- Assumptions
 - Population standard deviation is unknown
 - Population is normally distributed
 - If population is not normal, use large sample (n > 30)
- Use Student's t Distribution
- Confidence Interval Estimate:

$$\overline{X} \pm t_{\alpha/2} \frac{S}{\sqrt{n}}$$

(where $t_{\alpha/2}$ is the critical value of the t distribution with n -1 degrees of freedom and an area of $\alpha/2$ in each tail)

Degrees of Freedom (df)

Idea: Number of observations that are free to vary after sample mean has been calculated

Example: Suppose the mean of 3 numbers is 8.0

Here, n = 3, so degrees of freedom = n - 1 = 3 - 1 = 2

(2 values can be any numbers, but the third is not free to vary for a given mean)

Student's t Distribution

Note: $t \rightarrow Z$ as n increases

Example of t distribution confidence interval

A random sample of n = 25 has $\overline{X} = 50$ and S = 8. Form a 95% confidence interval for μ

► d.f. = n - 1 = 24, so
$$t_{\alpha/2} = t_{0.025} = 2.0639$$

The confidence interval is

$$\overline{X} \pm t_{\alpha/2} \frac{S}{\sqrt{n}} = 50 \pm (2.0639) \frac{8}{\sqrt{25}}$$

$$46.698 \le \mu \le 53.302$$

Example of t distribution confidence interval

- Interpreting this interval requires the assumption that the population you are sampling from is approximately a normal distribution (especially since n is only 25).
- This condition can be checked by creating a:
 - Normal probability plot or
 - Boxplot

Sampling Error

- The required sample size can be found to reach a desired margin of error (e) with a specified level of confidence (1 α)
- ► The margin of error is also called sampling error
 - the amount of imprecision in the estimate of the population parameter
 - the amount added and subtracted to the point estimate to form the confidence interval

Determining Sample Size Determining Sample Size For the Mean $n = \frac{Z_{\alpha/2}^2 \sigma^2}{e^2}$ $e = Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ Now solve for n to get

Determining Sample Size

To determine the required sample size for the mean, you must know:

The desired level of confidence $(1 - \alpha)$, which determines the critical value, $Z_{\alpha/2}$

The acceptable sampling error, e

 \blacktriangleright The standard deviation, σ

Required Sample Size Example

If σ = 45, what sample size is needed to estimate the mean within ± 5 with 90% confidence?

$$n = \frac{Z^2 \sigma^2}{e^2} = \frac{(1.645)^2 (45)^2}{5^2} = 219.19$$

So the required sample size is **n = 220**

(Always round up)

If σ is unknown

If unknown, σ can be estimated when using the required sample size formula

• Use a value for σ that is expected to be at least as large as the true σ

Select a pilot sample and estimate σ with the sample standard deviation, S

hypothesis testing

Objectives

In this session, you learn:

- The basic principles of hypothesis testing
- How to use hypothesis testing to test a mean or proportion
- The assumptions of each hypothesis-testing procedure, how to evaluate them, and the consequences if they are seriously violated
- Pitfalls & ethical issues involved in hypothesis testing
- How to avoid the pitfalls involved in hypothesis testing

What is a Hypothesis?

A hypothesis is a claim (assertion) about a population parameter:

population mean

Example: The mean monthly cell phone bill in this city is $\mu = 42

population proportion

Example: The proportion of adults in this city with cell phones is $\pi = 0.68$

The Null Hypothesis, H₀

States the claim or assertion to be tested

Example: The mean diameter of a manufactured bolt is 30mm ($H_0: \mu = 30$)

Is always about a population parameter, not about a sample statistic

$$H_0: \mu = 30$$
 $H_0: \overline{X} = 30$

The Null Hypothesis, H₀

- Begin with the assumption that the null hypothesis is true
- Always contains "=", or "≤", or "≥" sign
- May or may not be rejected
The Alternative Hypothesis, H₁

- Is the opposite of the null hypothesis
 - e.g., The mean diameter of a manufactured bolt is not equal to 30mm ($H_1: \mu \neq 30$)
- Never contains the "=", or "≤", or "≥" sign
- May or may not be proven
- Is generally the hypothesis that the researcher is trying to prove

The Hypothesis Testing Process

- Claim: The population mean age is 50.
 - ► $H_0: \mu = 50, \quad H_1: \mu \neq 50$
- Sample the population and find the sample mean.

The Hypothesis Testing Process

- Suppose the sample mean age was X = 20.
- This is significantly lower than the claimed mean population age of 50.
- If the null hypothesis were true, the probability of getting such a different sample mean would be very small, so you reject the null hypothesis.
- In other words, getting a sample mean of 20 is so unlikely if the population mean was 50, you conclude that the population mean must not be 50.

The Test Statistic and Critical Values

- If the sample mean is close to the stated population mean, the null hypothesis is not rejected.
- If the sample mean is far from the stated population mean, the null hypothesis is rejected.
- How far is "far enough" to reject H₀?
- The critical value of a test statistic creates a "line in the sand" for decision making -- it answers the question of how far is far enough.

The Test Statistic and Critical Values

Sampling Distribution of the test statistic

"Too Far Away" From Mean of Sampling Distribution

Risks in Decision Making Using Hypothesis Testing

- ► Type I Error
 - Reject a true null hypothesis
 - A type I error is a "false alarm"
 - \blacktriangleright The probability of a Type I Error is α
 - Called level of significance of the test
 - Set by researcher in advance

Type II Error

- Failure to reject a false null hypothesis
- Type II error represents a "missed opportunity"
- \blacktriangleright The probability of a Type II Error is **B**

Possible Errors in Hypothesis Test Decision Making

Possible Hypothesis Test Outcomes		
	Actual Situation	
Decision	H ₀ True	H ₀ False
Do Not Reject	No Error	Type II Error
H ₀	Probability 1 - α	Probability β
Reject H ₀	Type I Error	No Error
	Probability α	Power 1 - β

Possible Errors in Hypothesis Test Decision Making

- The confidence coefficient $(1-\alpha)$ is the probability of not rejecting H₀ when it is true.
- The confidence level of a hypothesis test is $(1-\alpha)*100\%$.

The power of a statistical test (1- β) is the probability of rejecting H₀ when it is false.

Type I & II Error Relationship

- Type I and Type II errors cannot happen at the same time
 - A Type I error can only occur if H₀ is true
 - A Type II error can only occur if H₀ is false

If Type I error probability
$$(\alpha)$$
 1, then
Type II error probability (β)

Factors Affecting Type II Error

- All else equal,
 - B when the difference between hypothesized parameter and its true value

Power

Level of Significance and the Rejection Region

This is a two-tail test because there is a rejection region in both tails

Hypothesis Tests for the Mean

Z Test of Hypothesis for the Mean (σ Known)

Convert sample statistic (\overline{X} **) to a Z_{STAT} test statistic**

Critical Value Approach to Testing

- For a two-tail test for the mean, σ known:
- Convert sample statistic (\overline{X}) to test statistic (Z_{STAT})
- Determine the critical Z values for a specified level of significance α from a table or by using computer software
- Decision Rule: If the test statistic falls in the rejection region, reject H₀; otherwise do not reject H₀

Two-Tail Tests

 There are two cutoff values (critical values), defining the regions of rejection

6 Steps in Hypothesis Testing

- 1. State the null hypothesis, H_0 and the alternative hypothesis, $H_{1.}$
- 2. Choose the level of significance, α , and the sample size, n. The level of significance is based on the relative importance of Type I and Type II errors.
- 3. Determine the appropriate test statistic and sampling distribution.
- 4. Determine the critical values that divide the rejection and nonrejection regions.

6 Steps in Hypothesis Testing

- 5. Collect data and compute the value of the test statistic.
- 6. Make the statistical decision and state the managerial conclusion. If the test statistic falls into the nonrejection region, do not reject the null hypothesis H_0 . If the test statistic falls into the rejection region, reject the null hypothesis. Express the managerial conclusion in the context of the problem.

Hypothesis Testing Example

Test the claim that the true mean diameter of a manufactured bolt is 30mm. (Assume $\sigma = 0.8$)

- 1. State the appropriate null and alternative hypotheses
 - $H_0: \mu = 30$ $H_1: \mu \neq 30$ (This is a two-tail test)
- 2. Specify the desired level of significance and the sample size
 - Suppose that α = 0.05 and n = 100 are chosen for this test

Hypothesis Testing Example

- 3. Determine the appropriate technique
 - σ is assumed known so this is a Z test
- 4. Determine the critical values
 - For α = 0.05 the critical Z values are ±1.96
- 5. Collect the data and compute the test statistic
 - Suppose the sample results are n = 100, X = 29.84
 (σ = 0.8 is assumed known)

So the test statistic is:

$$Z_{\text{STAT}} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{29.84 - 30}{\frac{0.8}{\sqrt{100}}} = \frac{-0.16}{0.08} = -2.0$$

p-Value Approach to Testing

- p-value: Probability of obtaining a test statistic equal to or more extreme than the observed sample value given H₀ is true.
 - The p-value is also called the observed level of significance.
 - It is the smallest value of $\,\alpha\,$ for which H_0 can be rejected .

p-Value Approach to Testing: Interpreting the p-value

\triangleright Compare the **p**-value with α

If p-value < α , reject H₀

If p-value $\geq \alpha$, do not reject H₀

► Remember

 \blacktriangleright If the p-value is low then H₀ must go

The 5 Step p-value approach to Hypothesis Testing

- 1. State the null hypothesis, H_0 and the alternative hypothesis, H_{1} .
- 2. Choose the level of significance, α , and the sample size, n. The level of significance is based on the relative importance of the risks of a type I and a type II error.
- 3. Determine the appropriate test statistic and sampling distribution.
- 4. Collect data and compute the value of the test statistic and the p-value.
- 5. Make the statistical decision and state the managerial conclusion. If the p-value is < α then reject H₀, otherwise do not reject H₀. State the managerial conclusion in the context of the problem.

p-value Hypothesis Testing Example

Test the claim that the true mean diameter of a manufactured bolt is 30mm. (Assume $\sigma = 0.8$)

- 1. State the appropriate null and alternative hypotheses.
 - $H_0: \mu = 30$ $H_1: \mu \neq 30$ (This is a two-tail test)
- 2. Specify the desired level of significance and the sample size
 - Suppose that α = 0.05 and n = 100 are chosen for this test

p-value Hypothesis Testing Example

- 3. Determine the appropriate technique
 - σ is assumed known so this is a Z test.
- 4. Collect the data, compute the test statistic and the p-value
 - Suppose the sample results are

n = 100, \overline{X} = 29.84 (σ = 0.8 is assumed known)

So the test statistic is:

$$Z_{\text{STAT}} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{29.84 - 30}{\frac{0.8}{\sqrt{100}}} = \frac{-0.16}{0.08} = -2.0$$

p-Value Hypothesis Testing Example: Calculating the p-value

- 4. (continued) Calculate the p-value.
 - How likely is it to get a Z_{STAT} of -2 (or something further from the mean (0), in either direction) if H₀ is true?

p-value Hypothesis Testing Example

- 5. Is the p-value < α ?
 - Since p-value = 0.0456 < α = 0.05 Reject H₀
- 5. (continued) State the managerial conclusion in the context of the situation.
 - There is sufficient evidence to conclude the mean diameter of a manufactured bolt is not equal to 30mm.

Connection Between Two Tail Tests and Confidence Intervals

For X = 29.84, σ = 0.8 and n = 100, the 95% confidence interval is:

29.84 - (1.96)
$$\frac{0.8}{\sqrt{100}}$$
 to 29.84 + (1.96) $\frac{0.8}{\sqrt{100}}$

 $29.6832 \le \mu \le 29.9968$

Since this interval does not contain the hypothesized mean (30), we reject the null hypothesis at $\alpha = 0.05$

Do You Ever Truly Know σ?

Probably not!

> In virtually all real world business situations, σ is not known.

lf there is a situation where σ is known then μ is also known (since to calculate σ you need to know μ .)

If you truly know µ there would be no need to gather a sample to estimate it.

Hypothesis Testing: σ Unknown

- If the population standard deviation is unknown, you instead use the sample standard deviation S.
- Because of this change, you use the t distribution instead of the Z distribution to test the null hypothesis about the mean.
- When using the t distribution you must assume the population you are sampling from follows a normal distribution.

All other steps, concepts, and conclusions are the same.

t Test of Hypothesis for the Mean (σ Unknow

• Convert sample statistic (\overline{X}) to a t_{STAT} test statistic

Distribution of Z & t

Example: Two-Tail Test (σ Unknown)

The average cost of a hotel room in New York is said to be \$168 per night. To determine if this is true, a random sample of 25 hotels is taken and resulted in an \overline{X} of \$172.50 and an S of \$15.40. Test the appropriate hypotheses at $\alpha = 0.05$.

(Assume the population distribution is normal)

To Use the t-test Must Assume the Population Is Normal

- As long as the sample size is not very small and the population is not very skewed, the t-test can be used.
- ► To evaluate the normality assumption:
 - Determine how closely sample statistics match the normal distribution's theoretical properties.
 - Construct a histogram or stem-and-leaf display or boxplot or a normal probability plot.

Connection of Two Tail Tests to Confidence Intervals

For X = 172.5, S = 15.40 and n = 25, the 95% confidence interval for µ is:

 $166.14 \le \mu \le 178.86$

Since this interval contains the Hypothesized mean (168), we do not reject the null hypothesis at α = 0.05

One-Tail Tests

In many cases, the alternative hypothesis focuses on a particular direction

This is a lower-tail test since the alternative hypothesis is focused on the lower tail below the mean of 3

This is an upper-tail test since the alternative hypothesis is focused on the upper tail above the mean of 3

Lower-Tail Tests

 There is only one critical value, since the rejection area is in only one tail

Upper-Tail Tests

H₀: μ ≤ 3 There is only one $H_1: \mu > 3$ critical value, since the rejection area is α in only one tail Do not reject H₀ Reject H₀ Z or t 0 Z_{α} or t_{α} Χ μ Critical value

Example: Upper-Tail t Test for Mean (σ unknown)

A phone industry manager thinks that customer monthly cell phone bills have increased, and now average over \$52 per month. The company wishes to test this claim. (Assume a normal population)

Form hypothesis test:

H ₀ : µ ≤ 52	the mean is not over \$52 per month
H ₁ : μ > 52	the mean is greater than \$52 per month (i.e., sufficient evidence exists to support the manager's claim)

Example: Find Rejection Region

Suppose that $\alpha = 0.10$ is chosen for this test and n = 25.

Example: Test Statistic

Obtain sample and compute the test statistic

Suppose a sample is taken with the following results: n = 25, \overline{X} = 53.1, and S = 10

Then the test statistic is:

Example: Decision

Do not reject H_0 since $t_{STAT} = 0.55 < 1.318$

there is not sufficient evidence that the mean bill is over \$52

Example: Utilizing The p-value for The Test

Ealculate the p-value and compare to α

Do not reject H_0 since p-value = .2937 > α = .10