

50.3: Scheme to show the course of the corticospinal tracts

Extrapyramidal pathways

Rubrospinal

Vestibulospinal

Tectospinal

Reticulospinal

olivospinal

Extrapyramidal pathways:

1st order neuron= cerebral cortex 2nd order neuron= subcortical center 3rd order neuron= cranial & spinal nucleus

Rubrospinal tract

Coordinator pathway for the effect of Cerebral & cerebellar cortex on motor neuron In spinal cord

Suppress extensor muscles activity Facilitated flexor muscles activity

Lateral corticospinal tract

Rubrospinal tract

Upper motor neuron lesions:

Palsy Espasticity Suppress of reflexes (babinski / cremasteric) Dystonia

(abdominal reflex, Cremasteric reflex)

Abdominal Reflex

Cremastic Reflex

Lower motor neuron lesions :

Palsy Flaccid Normal reflexes (babinski / cremastric

CREMASTERIC REFLEX

- The cremasteric reflex is a <u>reflex</u> in human males.
- The cremasteric reflex is dependent upon the nerve roots L1 and L2
- This reflex is elicited by lightly stroking the superior and medial part of the thigh in a downward direction. The normal response is a contraction of the <u>cremaster muscle</u> that pulls up the <u>scrotum</u> and <u>testis</u> on the side stroked.
- Upper and lower motor neurone disorders can cause an absence of the cremasteric reflex.

B. Abdominal reflexes

- The patient should be supine and relaxed.
- Use an orange stick and stroke briskly but lightly in a medial direction across the upper and lower quadrant of the abdomen.
- The normal responses is contraction of the underlying muscle with the umbilicus moving laterally and up or down depending upon the quadrant tested.

50.2: Simplified scheme to show the positions of the main ascending and descending tracts present in the spinal cord

Association pathways:

Coloration of different parts of cerebrum & spinal cord & cerebellum & brain stem

MLF

Autonomic nervous system

Sympathetic pathway

Parasympathetic pathway

Autonomic nervous system:

Visceral Afferent = unipolar neuron / cell body located in dorsal root ganglion & cranial nerve ganglion (<u>the same as somatic afferent</u>) Visceral efferent =

Preganglionic neuron / cell body located in motor nucleus of sympathetic
 & parasympathetic in lat. Spinal horn or brain stem
 Postganglionic neuron / cell body located in sympathetic & parasympathetic ganglion

Sympathetic pathway parts:

Visceral afferent = the same as somatic afferent *Visceral efferent* = have 5 parts

Sympathetic control center =
 Upper center / diencephalon (hypothalamus)
 Lower center = lat. Horn of T1-L2

Preganglionic fibers
 Sympathetic ganglion (sympathetic chain)

- Paravertebral ganglion = around vertebral column / 22-24 pair / C1-C3 / T1-T12 / L1-L4 / S1-S5 / Impar ganglion
- Prevertebral ganglion = around great vessels

Postganglionic fibers = terminated in target organ

White & gray communicants = association of paravertebral ganglion with ant. Root of spinal cord

White communicant = Preganglionic fibers

Gray communicants = Postganglionic fibers

Fig. 275 The essential difference between the cerebrospinal and autonomic outflows: (a) the cerebrospinal system has its lowest efferent nerve cell stations within the cns.; (b) the autonomic system has its lowest efferent cell stations in a peripheral ganglion (here illustrated by a typical sympathetic nerve gangtion). Red, afferent pathway; yellow, efferent pathway.

>Note:

Preganglionic fibers have 3 pathways:

- **1.** Synapse in paravertebral sympathetic ganglion
- 2. Synapse in lower & upper paravertebral sympathetic ganglion
- 3. Synapse in Prevertebral sympathetic ganglion

Sympathetic pathways in body

Upper limb

smooth muscles of vessels / erector muscles of hair / sweat glands

Lower limb

Sympathetic pathways in body

Organ/structure innervated	Function
Eccrine sweat glands of skin	Release of sweat
Arrector pili muscle	Contraction
Blood vessels of skeletal muscle	Dilation
Blood vessels of skin/mucous membranes	Vasoconstriction
Blood vessels of abdominal viscera	Vasoconstriction
Coronary arteries	No effect
Sinoatrial node of heart	Accelerates heart beat
Ventricular myocardium	Increases force of contraction
Alimentary canal	Reduces peristalsis; contraction of sphincters
Iris	Dilates pupils
Levator palpebrae superioris	Contraction of smooth muscles opens upper eyelids
Ductus deferens	Increases peristaltic movements carrying spermatozoa
Bronchial smooth muscle	Relaxation of smooth muscle causes easier breathing
Suprarenal medulla	Releases epinephrine

Table 9.1•Functions of the sympatheticnervous system.

Sympathetic pathway function: (fight & flight)

heart rate
 Vasoconstriction
 BP
 blood Shift to brain / heart / skeletal muscles
 Dilation of pupils
 Suppress smooth muscles of bronchi / intestine / bladder
 Sphincters closed

Autonomic nervous system:

Visceral Afferent =

unipolar neuron / cell body located in dorsal root ganglion & cranial nerve ganglion (the same as somptic afferent)

Visceral efferent =

Preganglionic neuron / cell body located in motor nucleus of sympathetic & parasympathetic
Postganglionic neuron / cell body located in sympathetic & parasympathetic ganglion

Parasympathetic pathway

ParaSympathetic pathway parts:

Visceral afferent = the same as somatic afferent Visceral efferent = have 4 parts

ParaSympathetic control center =

Upper center / diencephalon (hypothalamus)
Lower center = lat. Horn of S2-S4 / brain stem (parasympathetic nucleus of cranial nerve 3 / 7 / 9/ 10)
Edinger-Westphal / sup. Salivary – lacrimal / inf. Salivary / dorsal *Preganglionic fibers (cranial / sacral) Sympathetic ganglion (sympathetic chain)*

Cilliary ganglion / 3

- Pterygopalatine & submandibular ganglion / 7
- Otic ganglion / 9

Postganglionic fibers = terminated in target organ

parasympathetic ganglion

Organ/structure innervated	Function
Iris	Constricts pupils (miosis)
Ciliary muscles	Contracts to relax suspensory ligaments of the lens (near vision)
Lacrimal glands	Facilitates flow of tears
Salivary glands	Facilitates flow of serous secretion
Sinoatrial node of heart	Decreases rate of heart beat
Blood vessels	Usually has little effect
Bronchial smooth muscle	Bronchoconstriction
Glands of conducting portion of respiratory system	Facilitates secretion
Peristalsis of alimentary canal	Stimulates peristalsis
Sphincter muscles	Relaxes sphincter muscles (inhibitory function)
Intrinsic glands of the alimentary canal	Facilitates secretion
Pancreas	Facilitates secretion
Gall bladder	Facilitates release of bile
Penis and clitoris	Stimulates erection

Table 9.2Functions of theparasympatheric nervous system.

Horner's syndrome:

Pupillary constriction (miosis) Ptosis Enophthalmos Vasodilation Ahydrosis in neck & face

Raynod disease:

To treat vasoconstriction in upper limb Diminished pain Removed satellite ganglion (inf. Cervical ganglion)

